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J. Phys. A: Math. Gen.29 (1996) 6467–6470. Printed in the UK

COMMENT

Reply to comments on ‘A new efficient method for
calculating perturbation energies using functions which are
not quadratically integrable’

L Skála† and JČı́žek‡
† Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2,
Czech Republic
‡ University of Waterloo, Department of Applied Mathematics, Waterloo, Ontario N2L 3G1,
Canada

Received 28 May 1996

Abstract. In a previous paper (Skála and Čı́žek 1996) a new approach to calculating
perturbation energies of bound states based on the use of functions which are not quadratically
integrable was suggested. This method has been analysed in a comment by Guardiola and Ros
(1996). The present comment is the reply to this previous comment. The aim is to give a
simple and straightforward proof of the method and clarify some other points important for its
application.

Following [1] and [2], the Hamiltonian, wavefunction and energy in the perturbation theory
are assumed in the usual forms

H = H0 + λH1 (1)

ψ = ψ0 + λψ1 + λ2ψ2 + · · · (2)

and

E = E0 + λE1 + λ2E2 + · · · . (3)

Using these assumptions in the Schrödinger equationHψ = Eψ , the well known
equations forEn andψn are obtained:

H0ψ0 = E0ψ0 (4)

and

H0ψn +H1ψn−1 =
n∑
i=0

Eiψn−i n = 1, 2, . . . . (5)

The perturbation energiesEn in this equation are determined from the corresponding
boundary conditions.

Assuming the validity of the normalization and orthogonality conditions

〈ψ0|ψn〉 = δ0,n n = 0, 1, . . . (6)

the well known formula forEn

En = 〈ψ0|H1|ψn−1〉 n = 1, 2, . . . (7)
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can be easily derived.
In [1], we suggested another formula for the perturbation energy

En = −ψn(0, x0)

F (x0)
n = 1, 2, . . . (8)

in which the validity of equation (6) is not assumed. Here,ψn(En, x) denotes the solution
of equation (5) for the energyEn andx0 is the point where the boundary conditions

ψn(x0) = 0 n = 0, 1, . . . (9)

are applied.F(x) is a universal function which can be calculated from the equation

F(x) = ψ1(1, x)− ψ1(0, x). (10)

We note thatEn in ψn(En, x) is not the value of the perturbation energy, but a parameter
which is used during the integration of equation (5) for a givenn. In consequence, functions
ψn(En, x) are not in general quadratically integrable. It applies also forEn = 1 andEn = 0.

Equation (8) is a very simple and interesting result showing that functions which are
not quadratically integrable can be used for the calculation of the perturbation energies of
quadratically integrable states.

In [1], detailed discussion of the validity of equations (8) and (10) was not given. This
has been noted in [2] and a rather complicated proof of these equations has been elaborated.
Discussion of the boundary conditions in the numerical solution of equation (5) has not
been performed in [1] and [2]. The aim of this comment is to show that equations (8) and
(10) follow very simply from equation (5) if these conditions are taken in the usual form.
We would also like to comment on some remarks regarding the numerical properties of our
method.

Now we assume thatEi andψi(x), i = 0, . . . , n−1 are the correct perturbation energies
and wavefunctions.

Following [2], we denote

n−1∑
i=1

Eiψn−i (x)−H1ψn−1(x) = F(x). (11)

Then, equation (5) becomes

(H0 − E0)ψn(En, x) = Enψ0(x)+ F(x) n = 1, 2, . . . . (12)

Subtracting this equation for a general value of the parameterEn and forEn = 0 we get

(H0 − E0)(ψn(En, x)− ψn(0, x)) = Enψ0(x). (13)

For En = 1, this equation yields

(H0 − E0)(ψn(1, x)− ψn(0, x)) = ψ0(x). (14)

Using the last expression forψ0(x) in equation (13) we get

(H0 − E0)(ψn(En, x)− ψn(0, x)) = En(H0 − E0)(ψn(1, x)− ψn(0, x)). (15)

We see from this equation that, in general,

ψn(En, x)− ψn(0, x) = En(ψn(1, x)− ψn(0, x))+Gn(En)ψ0(x) (16)

whereGn(En) is a function ofEn.
To determineGn(En), we assume the same boundary conditions forψn as in the usual

numerical solution of equation (5). We suppose that the integration of equation (5) is
performed on a finite but sufficiently large interval〈xs, x0〉. Here, xs (xs < x0) is the
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starting point of the integration andx0 is the final point where the boundary conditions
(9) are applied. At the starting pointxs, we keep constant the value of the wavefunction
ψn(En, xs) for all the values of the parameterEn

ψn(En, xs) = cn n = 0, 1, . . . . (17)

Here, cn is a small number different from zero. To defineψn(En, x) uniquely, we make
similar assumption also about its derivative

∂ψn(En, x)

∂x

∣∣∣∣
x=xs

= dn, n = 0, 1, . . . (18)

wheredn is a small number or zero. Values of the constantscn anddn are not critical. The
value of the perturbation energyEn is determined by the boundary condition (9).

Using the boundary condition (17) in equation (16) we get

Gn(En)ψ0(E0, xs) = 0. (19)

Taking into account the fact thatψ0(E0, xs) = c0 6= 0 we see that

Gn(En) = 0 (20)

and

ψn(En, x)− ψn(0, x) = En(ψn(1, x)− ψn(0, x)). (21)

Let us assume now thatEn is the perturbation energy determined by the boundary condition
ψn(En, x0) = 0. Then, equation (21) gives forx = x0

En = − ψn(0, x0)

ψn(1, x0)− ψn(0, x0)
n = 1, 2, . . . . (22)

Writing equation (14) for generaln and for n = 1 we get the result similar to
equation (16)

ψn(1, x)− ψn(0, x) = ψ1(1, x)− ψ1(0, x)+ gnψ0(x) (23)

wheregn is a constant. It is obvious thatgn = 0 for the same reason asGn(En) = 0 and

ψn(1, x)− ψn(0, x) = ψ1(1, x)− ψ1(0, x). (24)

We see that the differenceψn(1, x)−ψn(0, x) is a universal function ofx denoted asF(x)
in [1]

ψn(1, x)− ψn(0, x) = F(x) n = 1, 2, . . . . (25)

With this function, equation (22) can be written in the form of equation (8). Equation (11)
of [1]

∂ψn(En, x)

∂En
= F(x) (26)

is a trivial consequence of equations (21) and (25).
We note that the perturbationH1 does not appear in (13). Therefore,F(x) is a universal

function not only for all ordersn = 1, 2, . . . but also for all the perturbationsH1 assuming
that the zero-order HamiltonianH0 does not change and the boundary conditions forψn
have the form of equations (9), (17) and (18).

During our proof of equation (8), the validity of the normalization and orthogonality
conditions (6) was not assumed. Therefore, equation (8) is more general than equation (7). It
is remarkable that, in contrast to the variational methods or usual versions of the perturbation
theory such as (7), no matrix elements have to be calculated in equation (8). To determine
En from this equation, only one function valueψn(0, x0) andF(x0) must be known.
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Since the validity of the normalization and orthogonality conditions (6) is not required in
our method, the wavefunctionsψn calculated numerically from equation (5) can in general
contain an arbitrary component ofψ0. It is obvious that it leads to the renormalization of
theψ0 component in the resulting wavefunctionψ . If required, the orthogonality conditions
(6) can be obeyed by the usual orthogonalization scheme.

Finally, we note that the calculation of eigenfunctions for eigenvalues taken as
parameters is a part of standard algorithms for the calculation of eigenvalues of differential
equations. In these algorithms, differential equations are numerically integrated and
estimates of the eigenvalues are changed until the boundary conditions are obeyed. Such
‘shooting’ methods represent a standard numerical procedure and have no special problems
with instabilities and overflows. In [1] and in this comment, we have discussed a special
case of differential equations, namely, the perturbation equations. From this point of view,
the remark in [2], according to which the method using functions that are not normalizable
is prone to instabilities and overflows, seems to be out of place.

Finally, let us repeat [1] that the two most important applications are the strong coupling
perturbation theory [3–11] as well as a rigorous mathematical theory of the upper and lower
bounds [12] which is more effective than the inner projection technique [13].
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[1] Skála L andČı́žek J 1996J. Phys. A: Math. Gen.29 L129
[2] Guardiola R and Ros J 1996J. Phys. A: Math. Gen.29 6461
[3] Turbiner A V and Ushveridze A G 1988J. Math. Phys.29 2053
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[12] Čı́žek J and Sḱala L Functions, which are not quadratically integrable, and mathematically rigorous upper

and lower bounds for the eigenvalues of simple systems in preparation
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